• Study
  • Data use
    • Access & download data
    • Responsible use
    • Acknowledgment
  • Documentation
    • Curation & structure
    • Non-imaging
    • Imaging
    • Substudies
    • Release notes
  • Tools
    • Data tools
    • R Packages
  • Info
    • FAQs
    • Report issues
    • Changelog
    • Cite this website
  • Version
    • empty
  1. Imaging data
  2. Scan types
  3. Documentation
  4. Imaging
  5. Structural MRI
  • Curation & structure
    • Data structure
    • Curation standards
    • Naming convention
    • Metadata
  • Non-imaging data
    • ABCD (General)
    • Friends, Family, & Community
    • Genetics
    • Linked External Data
    • Mental Health
    • Neurocognition
    • Novel Technologies
    • Physical Health
    • Substance Use
  • Imaging data
    • Administrative & QC tables
      • MRI Administration
      • MRI Quality control
    • Data types
      • Documentation
        • Imaging
          • Concatenated
          • MRI derivatives data documentation
          • Source data / raw data
          • Supplementary tables
    • Scan types
      • Documentation
        • Imaging
          • Diffusion MRI
          • MRI Quality control
          • Resting-state fMRI
          • Structural MRI
          • Task-based fMRI
          • Task-based fMRI (Behavioral performance)
          • Trial level behavioral performance during task-based fMRI
    • ABCD BIDS Community Collection (ABCC)
      • Documentation
        • Imaging
          • ABCD-BIDS community collection
          • BIDS conversion
          • Data processing
          • Derivatives
          • Quality control procedures
  • Substudy data
    • COVID-19 rapid response research
    • Endocannabinoid
    • IRMA
    • MR Spectroscopy
    • Social Development
  • Release notes
    • 6.0 data release

On this page

  • Domain overview
    • Image processing
    • Cortical surface reconstruction
    • Morphometry
    • Image intensity measures
    • Regions of interest (ROIs)
  • Methods
  • Notes
    • Effects of scanner instance and software version
    • High density, phased array head coils
    • Siemens normalized sMRI DICOMs
  1. Imaging data
  2. Scan types
  3. Documentation
  4. Imaging
  5. Structural MRI

Structural MRI

Domain overview

Please scroll horizontally to view the number of variables and events of administration for the displayed tables.

The Structural MRI (SMRI) data conatins T1-weighted (T1w) 3D structural images and T2-weighted (T2w) 3D structural images.

Image processing

  • corrected for gradient nonlinearity distortions (Jovicich et al., 2006)
  • T2w images registered to T1w images using mutual information (Wells et al., 1996)
  • Intensity non-uniformity correction based on tissue segmentation and sparse spatial smoothing
  • Resampled with 1 mm isotropic voxels into rigid alignment with an atlas brain

Cortical surface reconstruction

  • FreeSurfer v7.1.1
  • Skull-stripping (Segonne et al., 2004)
  • White matter segmentation, initial mesh creation (Dale et al., 1999)
  • Correction of topological defects (Fischl et al., 2001; Segonne et al., 2007)
  • Surface optimization (Dale et al., 1999; Dale & Sereno, 1993; Fischl & Dale, 2000)
  • Nonlinear registration to a spherical surface-based atlas (Fischl et al., 1999)

Morphometry

  • Subcortical regional volume
  • Cortical volume
  • Cortical thickness (Fischl & Dale, 2000)
  • Cortical area (Chen et al., 2012; Joyner et al., 2009)
  • Sulcal depth (Fischl et al., 1999)

Image intensity measures

  • T1w and T2w intensity measures in white matter (-0.2 mm from gray/white boundary)
  • T1w and T2w intensity measures in gray matter (+0.2 mm from gray/white boundary)
  • Normalized T1w and T2w cortical gray/white intensity contrast (Westlye et al., 2009)

Regions of interest (ROIs)

  • Subcortical structures labeled with atlas-based segmentation (Fischl et al., 2002)
  • Cortical regions labeled with the Desikan atlas-based classification (Desikan et al., 2006)
  • Cortical regions labeled with the Destrieux atlas-based classification (Destrieux et al., 2010)
  • Fuzzy-cluster parcels, based on genetic correlation of surface area (Chen et al., 2012); Note, all fuzzy clusters are based on genetic clustering of surface area data, even when applied to other phenotypes such as thickness and volume.

Methods

Image processing and analysis methods corresponding to ABCD Release 2.0.1 are described in Hagler et al., 2019, NeuroImage. Image processing and analysis methods for the Adolescent Brain Cognitive Development Study (doi: 10.1016/j.neuroimage.2019.116091). Changes to image processing and analysis methods in Release 4.0 are documented in Structural MRI release notes. No significant changes were made to the processing pipeline for Release 3.0, 5.0, or 6.0.

Notes

Effects of scanner instance and software version

Multisite longitudinal MRI imaging data are potentially susceptible to influences of scanning parameters, scanner manufacturer, scanner model, and software version, which vary across sites, and sometimes across time. For more information, please refer to “Effects of scanner instance and software version” in Imaging Overview Data Documentation.

High density, phased array head coils

The ABCD acquisition sites use either 32 channel head or 64 channel head/neck coils, depending on availability. Standard correction methods, such as those used by FreeSurfer, are limited when compensating for steep spatial intensity variation, leading to inaccurate brain segmentation or cortical surface reconstruction. For example, brain tissue farther from the coils, such as the temporal and frontal poles, typically have lower intensity values resulting in focal underestimation of the white matter surface or the elimination of large pieces of the cortical surface reconstruction. Furthermore, brain tissue close to coils with extremely high intensity values may be mistaken for non-brain tissue (e.g., scalp). To overcome this, the ABCD minimally processed structural MRI (sMRI) files include an improved intensity inhomogeneity correction, using a smoothly varying bias field optimized to standardize image intensities within all white matter voxels.

Siemens normalized sMRI DICOMs

Siemens scanners provide an intensity normalization procedure to correct for bias fields. As a result, Siemens scanners have two sets of DICOMs for each sMRI data series (i.e. T1, T2, T1_NORM, and T2_NORM). The non-normalized images with large intensity ranges (e.g. with a 64 channel head coil) may be clipped at 4095, impairing cortical reconstruction. The ABCD pipeline uses only the normalized sMRI (T1_NORM and T2_NORM), but both versions are included in the source data DICOMs and raw data NIfTI files.

Key reference: Hagler, D. J. & Hatton, \. S. (2019). NeuroImage, 202, 116091. https://doi.org/10.1016/j.neuroimage.2019.116091
Hagler et al. (2019)

References

Chen, C.-H., Gutierrez, E. D., Thompson, W., Panizzon, M. S., Jernigan, T. L., Eyler, L. T., Fennema-Notestine, C., Jak, A. J., Neale, M. C., Franz, C. E., Lyons, M. J., Grant, M. D., Fischl, B., Seidman, L. J., Tsuang, M. T., Kremen, W. S., & Dale, A. M. (2012). Science, 335(6076), 1634–1636. https://doi.org/10.1126/science.1215330
Dale, A. M., Fischl, B., & Sereno, M. I. (1999). NeuroImage, 9(2), 179–194. https://doi.org/10.1006/nimg.1998.0395
Dale, A. M., & Sereno, M. I. (1993). Journal of Cognitive Neuroscience, 5(2), 162–176. https://doi.org/10.1162/jocn.1993.5.2.162
Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., Buckner, R. L., Dale, A. M., Maguire, R. P., Hyman, B. T., Albert, M. S., & Killiany, R. J. (2006). NeuroImage, 31(3), 968–980. https://doi.org/10.1016/j.neuroimage.2006.01.021
Destrieux, C., Fischl, B., Dale, A., & Halgren, E. (2010). NeuroImage, 53(1), 1–15. https://doi.org/10.1016/j.neuroimage.2010.06.010
Fischl, B., & Dale, A. M. (2000). Proceedings of the National Academy of Sciences, 97(20), 11050–11055. https://doi.org/10.1073/pnas.200033797
Fischl, B., Liu, A., & Dale, A. M. (2001). IEEE Transactions on Medical Imaging, 20(1), 70–80. https://doi.org/10.1109/42.906426
Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., Van Der Kouwe, A., Killiany, R., Kennedy, D., Klaveness, S., Montillo, A., Makris, N., Rosen, B., & Dale, A. M. (2002). Neuron, 33(3), 341–355. https://doi.org/10.1016/S0896-6273(02)00569-X
Fischl, B., Sereno, M. I., & Dale, A. M. (1999). NeuroImage, 9(2), 195–207. https://doi.org/10.1006/nimg.1998.0396
Hagler, D. J., Hatton, SeanN., Cornejo, M. D., Makowski, C., Fair, D. A., Dick, A. S., Sutherland, M. T., Casey, B. J., Barch, D. M., Harms, M. P., Watts, R., Bjork, J. M., Garavan, H. P., Hilmer, L., Pung, C. J., Sicat, C. S., Kuperman, J., Bartsch, H., Xue, F., … Dale, A. M. (2019). NeuroImage, 202, 116091. https://doi.org/10.1016/j.neuroimage.2019.116091
Jovicich, J., Czanner, S., Greve, D., Haley, E., Van Der Kouwe, A., Gollub, R., Kennedy, D., Schmitt, F., Brown, G., MacFall, J., Fischl, B., & Dale, A. (2006). NeuroImage, 30(2), 436–443. https://doi.org/10.1016/j.neuroimage.2005.09.046
Joyner, A. H., J., C. R., Bloss, C. S., Bakken, T. E., Rimol, L. M., Melle, I., Agartz, I., Djurovic, S., Topol, E. J., Schork, N. J., Andreassen, O. A., & Dale, A. M. (2009). Proceedings of the National Academy of Sciences, 106(36), 15483–15488. https://doi.org/10.1073/pnas.0901866106
Segonne, F., Dale, A. M., Busa, E., Glessner, M., Salat, D., Hahn, H. K., & Fischl, B. (2004). NeuroImage, 22(3), 1060–1075. https://doi.org/10.1016/j.neuroimage.2004.03.032
Segonne, F., Pacheco, J., & Fischl, B. (2007). IEEE Transactions on Medical Imaging, 26(4), 518–529. https://doi.org/10.1109/TMI.2006.887364
Wells, W. M., Viola, P., Atsumi, H., Nakajima, S., & Kikinis, R. (1996). Medical Image Analysis, 1(1), 35–51. https://doi.org/10.1016/S1361-8415(01)80004-9
Westlye, L. T., Walhovd, K. B., Dale, A. M., Espeseth, T., Reinvang, I., Raz, N., Agartz, I., Greve, D. N., Fischl, B., & Fjell, A. M. (2009). NeuroImage, 47(4), 1545–1557. https://doi.org/10.1016/j.neuroimage.2009.05.084
 

ABCD Study®, Teen Brains. Today’s Science. Brighter Future.® and the ABCD Study Logo are registered marks of the U.S. Department of Health & Human Services (HHS). Adolescent Brain Cognitive Development℠ Study is a service mark of the U.S. Department of Health & Human Services (HHS).